Những câu hỏi liên quan
Minh Nguyễn Cao
Xem chi tiết
Thắng Nguyễn
1 tháng 8 2018 lúc 17:13

Áp dụng BĐT AM-GM ta có: 

\(\frac{a^2}{b+c}+\frac{b+c}{\frac{9}{4}}+\frac{b^2}{c+a}+\frac{a+c}{\frac{9}{4}}+\frac{16c^2}{a+b}+a+b\)

\(\ge2\sqrt{\frac{a^2}{b+c}\cdot\frac{b+c}{\frac{9}{4}}}+2\sqrt{\frac{b^2}{c+a}\cdot\frac{a+c}{\frac{9}{4}}}+2\sqrt{\frac{16c^2}{a+b}\cdot\left(a+b\right)}=\frac{4a+4b}{3}+8c\)

Suy ra 

\(VT\ge\frac{4a+4b}{3}+8c-\frac{b+c}{\frac{9}{4}}-\frac{c+a}{\frac{9}{4}}-\left(a+b\right)=\frac{64c-a-b}{9}=VP\)

Dấu "=" khi \(a=b=2c\) 

Bài này bạn cũng chú ý tới dấu "=" là xong nhé.

Bình luận (0)
tth_new
Xem chi tiết
Phạm Thị Thùy Linh
10 tháng 4 2019 lúc 12:43

Í em mới lớp 7 thôi hả

Vậy mà giỏi đến mức được làm công tác viên òi

Tức là chị là chị của công tác viên hí hí 
~ lớp 8 ~

Bình luận (0)
Nguyễn Khang
10 tháng 4 2019 lúc 17:29

Lớp 7 nhưng chịu quá nhiều tai tiếng ạ,vs như lúc đó ko thuộc hằng đẳng thức bình phương của một tổng,làm xàm thế là...

Bình luận (0)
Phạm Thị Thùy Linh
10 tháng 4 2019 lúc 19:31

What !!!   Lớp 7 chi học hằng đẳng thức !!!

Tai chị có thể nghe nhầm nhưng mắt chị thì đọc ik đọc lại sao nhầm đây???

Rõ là lớp 8 ( bọn chị ) mới học mừ 

Bình luận (0)
Đường Quỳnh Giang
Xem chi tiết
Phạm Thế Mạnh
7 tháng 9 2018 lúc 21:13

Ta có: \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\Leftrightarrow\sqrt{3}\sqrt{a^2+b^2+c^2}\ge a+b+c\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Rightarrow\frac{1}{3}\left(a^2+b^2+c^2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{3}.\frac{1}{3}\left(a+b+c\right)^2.\frac{9}{a+b+c}=a+b+c\)(1)

Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\sqrt{3}\sqrt{a^2+b^2+c^2}}\)
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt{3}\sqrt{a^2+b^2+c^2}\)

\(\Rightarrow\frac{1}{3\sqrt{3}}\left(a^2+b^2+c^2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\sqrt{a^2+b^2+c^2}\)(2)
Cộng vế với vế của (1) với (2) ta được đpcm
Dấu "=" xảy ra khi a=b=c

Bình luận (0)
Sắc màu
8 tháng 9 2018 lúc 10:19

Hầu hết nỗi buồn của chúng ta đều bắt nguồn từ việc lấy behind the scenes của đời mình so sánh với trailer của người khác.

Thâm thúy :v

Bình luận (0)
bach nhac lam
Xem chi tiết
Ngô Bá Hùng
29 tháng 10 2019 lúc 9:09

Ta có:

\(\left(a+b+c\right)\left[\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right]\\=\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right]\left[\left(\frac{\sqrt{a}}{b+c}\right)^2+\left(\frac{\sqrt{b}}{b+c}\right)^2+\left(\frac{\sqrt{c}}{a+c}\right)^2\right]\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\)

Mà ta có:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\) (BĐT Nesbit)

\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\frac{9}{4}\\ \Rightarrow\left(a+b+c\right)\left[\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right]\ge\frac{9}{4}\)

\(\Rightarrow\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\ge\frac{9}{4\left(a+b+c\right)}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
zZz Cool Kid zZz
5 tháng 11 2019 lúc 21:45

\(\left(a+b+c\right)\left[\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right]\)

\(=\left(\frac{a}{b+c}\right)^2+\left(\frac{b}{c+a}\right)^2+\left(\frac{c}{a+b}\right)^2+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\left(\frac{a}{b+c}\right)^2+\frac{1}{4}+\left(\frac{b}{c+a}\right)^2+\frac{1}{4}+\left(\frac{c}{a+b}\right)^2+\frac{1}{4}+\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\frac{3}{4}\)

\(\ge2\cdot\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\frac{3}{4}=\frac{9}{4}\) ( dpcm )

Bình luận (0)
 Khách vãng lai đã xóa
tthnew
7 tháng 11 2019 lúc 16:23

Ad Lâm chuẩn hóa a + b + c = 3 rồi nên em chuẩn hóa a + b + c = 1 nha:D

Chuẩn hóa a + b + c = 1 \(\Rightarrow0< a,b,c< 1\)

BĐT quy về: \(\Sigma\frac{a}{\left(1-a\right)^2}\ge\frac{9}{4}\)

Ta chứng minh BĐT phụ sau:

\(\frac{a}{\left(1-a\right)^2}\ge\frac{9}{2}a-\frac{3}{4}\Leftrightarrow\frac{\left(27-18x\right)\left(x-\frac{1}{3}\right)^2}{4\left(1-x\right)^2}\ge0\)(đúng)

Thiết lập tương tự các BĐT còn lại và cộng theo vế thu được đpcm:)

Bình luận (0)
 Khách vãng lai đã xóa
Neet
Xem chi tiết
Akai Haruma
2 tháng 3 2017 lúc 0:34

Bài 3)

BĐT cần chứng minh tương đương với:

\(\left ( \frac{a}{a+b} \right )^2+\left ( \frac{b}{b+c} \right )^2+\left ( \frac{c}{c+a} \right )^2\geq \frac{1}{2}\left ( 3-\frac{a}{a+b}-\frac{b}{b+c}-\frac{c}{c+a} \right )\)

Để cho gọn, đặt \((x,y,z)=\left (\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)\) \(\Rightarrow xyz=1\).

BĐT được viết lại như sau:

\(A=2\left [ \frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2} \right ]+\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\) \((\star)\)

Ta nhớ đến hai bổ đề khá quen thuộc sau:

Bổ đề 1: Với \(a,b>0\) thì \(\frac{1}{(a+1)^2}+\frac{1}{(b+1)^2}\geq \frac{1}{ab+1}\)

Cách CM rất đơn giản, Cauchy - Schwarz:

\((a+1)^2\leq (a+b)(a+\frac{1}{b})\Rightarrow \frac{1}{(a+1)^2}\geq \frac{b}{(a+b)(ab+1)}\)

Tương tự với biểu thức còn lại và cộng vào thu được đpcm

Bổ đề 2: Với \(x,y>0,xy\geq 1\) thì \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)

Cách CM: Quy đồng ta có đpcm.

Do tính hoán vị nên không mất tổng quát giả sử \(z=\min (x,y,z)\)

\(\Rightarrow xy\geq 1\). Áp dụng hai bổ đề trên:

\(A\geq 2\left [ \frac{1}{xy+1}+\frac{1}{(z+1)^2} \right ]+\frac{2}{\sqrt{xy}+1}+\frac{1}{z+1}=2\left [ \frac{z}{z+1}+\frac{1}{(z+1)^2} \right ]+\frac{2\sqrt{z}}{\sqrt{z}+1}+\frac{1}{z+1}\)

\(\Leftrightarrow A\geq \frac{2(z^2+z+1)}{(z+1)^2}+\frac{1}{z+1}+2-\frac{2}{\sqrt{z}+1}\geq 3\)

\(\Leftrightarrow 2\left [ \frac{z^2+z+1}{(z+1)^2}-\frac{3}{4} \right ]+\frac{1}{z+1}-\frac{1}{2}-\left ( \frac{2}{\sqrt{z}+1}-1 \right )\geq 0\)

\(\Leftrightarrow \frac{(z-1)^2}{2(z+1)^2}-\frac{z-1}{2(z+1)}+\frac{z-1}{(\sqrt{z}+1)^2}\geq 0\Leftrightarrow (z-1)\left [ \frac{1}{(\sqrt{z}+1)^2}-\frac{1}{(z+1)^2} \right ]\geq 0\)

\(\Leftrightarrow \frac{\sqrt{z}(\sqrt{z}-1)^2(\sqrt{z}+1)(z+\sqrt{z}+2)}{(\sqrt{z}+1)^2(z+1)^2}\geq 0\) ( luôn đúng với mọi \(z>0\) )

Do đó \((\star)\) được cm. Bài toán hoàn tất.

Dấu bằng xảy ra khi \(a=b=c\)

P/s: Nghỉ tuyển lâu rồi giờ mới gặp mấy bài BĐT phải động não. Khuya rồi nên xin phép làm bài 3 trước. Hai bài kia xin khiếu. Nếu làm đc chắc tối mai sẽ post.

Bình luận (1)
Lightning Farron
2 tháng 3 2017 lúc 18:11

Bài 1:

Cho \(a=b=c=\dfrac{1}{\sqrt{3}}\). Khi đó \(M=\sqrt{3}-2\)

Ta sẽ chứng minh nó là giá trị nhỏ nhất

Thật vậy, đặt c là giá trị nhỏ nhất của a,b,c. Khi đó, ta cần chứng minh

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\frac{2(a^2+b^2+c^2)}{\sqrt{ab+ac+bc}}\geq(\sqrt3-2)\sqrt{ab+ac+bc}\)

\(\Leftrightarrow\sqrt{ab+ac+bc}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\sqrt{3(ab+ac+bc)}\right)\geq2(a^2+b^2+c^2-ab-ac-bc)\)

\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{a}-a-b+\frac{b^2}{c}+\frac{c^2}{a}-\frac{b^2}{a}-c+a+b+c-\sqrt{3(ab+ac+bc)}\geq\)

\(\geq2((a-b)^2+(c-a)(c-b))\)

\(\Leftrightarrow(a-b)^2\left(\frac{1}{a}+\frac{1}{b}-2\right)+(c-a)(c-b)\left(\frac{1}{a}+\frac{b}{ac}-2\right)+a+b+c-\sqrt{3(ab+ac+bc)}\geq0\)

Đúng bởi \(\frac{1}{a}+\frac{1}{b}-2>0;\frac{1}{a}+\frac{b}{ac}-2\geq\frac{1}{a}+\frac{1}{a}-2>0\)

\(a+b+c-\sqrt{3(ab+ac+bc)}=\frac{(a-b)^2+(c-a)(c-b)}{a+b+c+\sqrt{3(ab+ac+bc)}}\geq0\)

BĐT đã được c/m. Vậy \(M_{Min}=\sqrt{3}-2\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)

P/s: Nhìn qua thấy ngon mà làm mới thấy thật sự là "choáng"

Bình luận (3)
Hung nguyen
2 tháng 3 2017 lúc 10:57

Câu 1/ Ta có

\(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow1\le\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\)

\(\Leftrightarrow\sqrt{3}\le a+b+c< 3\)

Ta có: \(M=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)

\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-2\left(a^2+b^2+c^2\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}-2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)\)

\(=a+b+c-2\left(a+b+c\right)^2+4\) (1)

Đặt \(a+b+c=x\left(\sqrt{3}\le x< 3\right)\)

Ta tìm GTNN của hàm số: \(y=-2x^2+x+4\)

\(\Rightarrow y'=-4x+1=0\)

\(\Rightarrow x=\frac{1}{4}=0,25\)

Thế x lần lược các giá trị \(\left\{\begin{matrix}x=0,25\\x=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y=4,125\\y=-2+\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow y_{min}=-2+\sqrt{3}\) đạt cực trị tại \(x=\sqrt{3}\) (2)

Từ (1) và (2) ta suy ra GTNN của M là \(-2+\sqrt{3}\) tại \(a=b=c=\frac{1}{\sqrt{3}}\)

Bình luận (7)
Ba Dấu Hỏi Chấm
Xem chi tiết
Thắng Nguyễn
27 tháng 11 2017 lúc 21:59

\(BDT\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(a+c\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(a+c\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\)

Theo BĐT Nesbitt thì : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\frac{9}{4}\)

Bình luận (0)
Kiệt Nguyễn
11 tháng 6 2020 lúc 19:50

Không mất tính tổng quát, chuẩn hóa a + b + c = 3 \(\Rightarrow0< a,b,c< 3\)

Khi đó bất đẳng thức tương đương với: \(\frac{a}{\left(3-a\right)^2}+\frac{b}{\left(3-b\right)^2}+\frac{c}{\left(3-c\right)^2}\ge\frac{3}{4}\)

Xét BĐT phụ: \(\frac{x}{\left(3-x\right)^2}\ge\frac{2x-1}{4}\)với \(x\in\left(0;3\right)\)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(-2x+9\right)}{4\left(3-x\right)^2}\ge0\)(đúng với mọi \(x\in\left(0;3\right)\))

Áp dụng, ta được: \(\frac{a}{\left(3-a\right)^2}+\frac{b}{\left(3-b\right)^2}+\frac{c}{\left(3-c\right)^2}\ge\frac{2a-1}{4}+\frac{2b-1}{4}+\frac{2c-1}{4}\)

\(=\frac{2\left(a+b+c\right)-3}{4}=\frac{3}{4}\left(q.e.d\right)\)

Đẳng thức xảy ra khi a = b = c 

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Tùng
Xem chi tiết
Incursion_03
12 tháng 1 2019 lúc 20:54

Có: \(VT=\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\)

            \(=\frac{bc}{ab+ac}+\frac{ac}{bc+ba}+\frac{ab}{ac+bc}\)

Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)được

\(VT\ge\frac{\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)^2}{2\left(ab+bc+ca\right)}\)

\(\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)^2\ge3\left(ab+bc+ca\right)\)(Chuyển vế đưa thành tổng bình phương) 

 \(\Rightarrow VT\ge...\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" khi a=b=c=1

Bình luận (0)
Hoàng Ngoc Diệp
Xem chi tiết
alibaba nguyễn
1 tháng 12 2019 lúc 10:37

Giả sử:

\(a>b>c\Rightarrow a-b>0,b-c>0,a-c>0\)

Ta có:

\(\hept{\begin{cases}a^2+b^2+c^2\ge a^2+c^2\\\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}\ge\frac{\left(\frac{1}{a-b}+\frac{1}{b-c}\right)^2}{2}\ge\frac{8}{\left(a-c\right)^2}\end{cases}}\)

Từ đây ta có:

\(VT\ge\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\)

Ta chứng minh

\(\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+c\right)^2\ge0\)(Đúng)

Vậy ta có điều phải chứng minh là đúng. Dấu = xảy ra khi a = - c; b = 0 và các hoán vị của nó

Bình luận (0)
 Khách vãng lai đã xóa
Phan Thị Hà Vy
Xem chi tiết
Bang Bang 2
1 tháng 8 2018 lúc 10:01

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web

AI CHƠI BANG BANG 2 THÌ TÍCH MÌNH

Bình luận (0)